
Fast Interrupts TG

Status at a glance:

[RVS-1017] Fast Interrupts (CLIC) - RISC-V Jira (riscv.org) 
CLIC ratification status is now tracked using Jira which includes links to google docs ratification plan and status checklist.

Charter

Current Charter at  https://github.com/riscv/groups/tree/main/Fast-Interrupts
Calendar: https://calendar.google.com/calendar/u/0/embed?src=tech.meetings@riscv.org
Develop a low-latency, vectored, priority-based, preemptive interrupt scheme for interrupts directed to a single hart, compatible with the existing 
RISC-V standards. Provide both hardware specifications and software ABIs/APIs. Standardize compiler conventions for annotating interrupt 
handler functions.
Meetings Disclaimers Video

Specification

Latest Draft Fast Interrupt Specification (v0.9-draft-20240314)
What's next:

0 outstanding pre-ratification issues.
Freeze Checklist Completed

Major items on Freeze Checklist: 

RISC-V SAIL 

SAIL Implementation Completed 

RISC-V Tests 

ACT tests created.  Missing SHV tests.

RISC-V Tests Input 

riscv-software-src/riscv-config: RISC-V Configuration Validator (github.com) 

Schema_isa.yaml - gives allowed configuration on risc-v and allowed values.  WARL fields give allowed ranges.  10k lines in file. 

Examples/rivc32i_isa.yaml is compared against schema_isa.yaml to see if it is allowed. 

When add new CSRs, add PR to add to schema_isa.yaml and then will be checked against example implementation. 

Schemas/schema_platforml.yaml - memory mapped registers (like clicintctl, etc.) 

Run python scripts that look at your implementation and see if it is valid.  e.g., if have d then have f- extenstion, etc. checks if WARL field 
is valid. 

Write anything, read legal.  mapping from what is illegal to what is legal.  mapping is arbitrary.  so prefer (easiest) if implementers 
implement when write something illegal, don’t write.  that works easiest for describing in this file. 

Encoding/OpCode consistency review

Need to propose new CLIC CSR Registers and addresses

What's next: when outstanding issues are reduced, start planning for review
 - when spec is solid but not a final spec - tech-chairs@lists.riscv.org primarily want to nail down opcode/CSR assignment and have a solid draft 

spec (but not a final spec ready for official Arch Review)
Also, to remind people of what gets reviewed (as is appropriate for a given extension), see the following list.  In addition to the extension spec, 
please submit information about the PoCs and about utility/efficiency (although we don't need all the gory detail - a paragraph or so for each can 
be fine).  For items considered to not be consequential, a sentence or so explaining why should suffice.

Consistency with the RISC-V architecture and philosophy
Documentation clarity and completeness

Including proper distinction between normative and non-normative text
Motivation and rationale for the features, instructions, and CSRs
Utility and efficiency (relative to existing architectural features and mechanisms)

Is there enough value or benefit to justify the cost of implementation
Is the cost in terms of area, timing, and complexity reasonable

Proof of   (PoC)Concept
Software PoC to ensure feature completeness and appropriateness for intended use cases
Hardware PoC to demonstrate reasonable implementability

Inappropriate references to protected IP (i.e. covered by patents, copyright, etc.)

https://jira.riscv.org/browse/RVS-1017?filter=10309
https://github.com/riscv/groups/blob/main/Fast-Interrupts/CHARTER.md
https://github.com/riscv/groups/tree/main/Fast-Interrupts
https://secure-web.cisco.com/1mKNoW1PyoSlGmULRn4nzRAtyMYgn1CayEdisshTDjSvMjqXlc2GU-U0162c-QrXa6WhCHqWM2eE1s9PnkxlXhLgkjhZuH-6YeP_Ux2FQqixxuxMucLEcmo_5AkVWL1ysRRvfbJvhwgG__jpAnIv76OfDUk9nKzaSkZ-eZuA6eeEASIiHsudnGht7pH7pyZCL2-ijmghOKwNeeF3OBEpI9FHR1Ewk9AWRlSkFLruEFgAiJDjCrIlKL1PLDyojVydLd_-iVDnCg-crzq99FLxcO-V3Jhmem45l3snXixDpgrx2jhKNO78DH8sTb1AF132Z6kb2qYCHrgQoSqC344uAqyH6pI6VBqrW_s5kWx3EiUziWtI5qzMrB5ImFMaqc7jmo90Q62Cz-5vuJAXKt5ZQuZJU_UMaklSOQKsRUR7PVJriqWdYcquwu3JzPwY2_Rqg9Vi5-reWnvqVujYp4k3RPg/https%3A%2F%2Fcalendar.google.com%2Fcalendar%2Fu%2F0%2Fembed%3Fsrc%3Dtech.meetings%40riscv.org
https://drive.google.com/file/d/1y_XWJus8M5ZwSQ2cvEOzCjlOmsmXOnN4/view
https://github.com/riscv/riscv-fast-interrupt/blob/master/clic.adoc
https://github.com/riscv-software-src/riscv-config
mailto:tech-chairs@lists.riscv.org


Architecture Tests

Deterministic Test plan for the fast-interrupt is .  Discussion on-going on how to add async/undeterministic testing of interrupts.available
YAML config needs to be created.  See info  .here
Discussion in Arch tests group to add automation (docker?) to validate check-in so that arch-test-suite is run against sail, spike, gcc/toolchain, 
with versions used recorded.  So sail and spike will need to work for CLIC before CLIC tests can be added to riscv-config github.

Compilers / Toolchains

GCC and Binutils

No new instructions are added.  Needs to be aware CSR names?  Need to choose arch string. Given that the key CSRs are in M-mode, it should 
probably be named something like "Smclic"

LLVM

No new instructions are added.  Needs to be aware of CSR names? 

Simulators

Though all listed under "simulators", these are actually a collection of formal model / virtual machine / architectural simulators / DV simulators etc.

SAIL

https://github.com/riscv/sail-riscv is the official location

Spike

TBD

riscvOVPSimPlus

Imperas Commercial Simulator
Freeware version

QEMU

QEMU implementation of CLIC-0.9 specification (Version 0.9-draft-20210217)

Proof-of-Concept implementations

Hardware

Project Name Base 
Architecture

Level of implementation Notes

area-optimized 
core

RV32/64 RTL simulation, FPGA 
Implementation, Synthesis

closed / commercial source   https://www.seagate.com/innovation/risc-v/

high-performance 
core

RV32 RTL simulation, FPGA 
Implementation, Synthesis

closed / commercial source   https://www.seagate.com/innovation/risc-v/

microcontroller-
class core

RV32IMAFC RTL, fully synthesizable Apache License, Version 2.0 https://github.com/T-head-Semi/opene906/blob/main/doc
/opene906_datasheet.pdf

E2/S2 series RV32/64 RTL, fully synthesizable https://www.sifive.com/core-designer

N22 RV32 RTL, fully synthesizable http://www.andestech.com/en/products-solutions/andescore-processors/riscv-n22/

BM-310/BI-651 RV32/64 RTL, fully synthesizable https://cloudbear.ru/bm_310.html      https://cloudbear.ru/bi_651.html

n200/n900/nx900
/ux900

RV32/64 RTL, fully synthesizable  (ECLIC) https://www.nucleisys.com/product.php?site=n200      https://www.nucleisys.com
/product.php?site=n900

R9A02G021 RV32 samples available R9A02G021 Datasheet (renesas.com)

Software

Project/Maintainer Description

https://github.com/riscv/riscv-fast-interrupt/blob/master/test-plan-clic.adoc
https://github.com/riscv/riscv-config
https://github.com/riscv/sail-riscv
http://www.ovpworld.org/riscvOVPsimPlus
https://lists.gnu.org/archive/html/qemu-devel/2021-04/msg01417.html
https://www.seagate.com/innovation/risc-v/
https://www.seagate.com/innovation/risc-v/
https://github.com/T-head-Semi/opene906/blob/main/doc/opene906_datasheet.pdf
https://github.com/T-head-Semi/opene906/blob/main/doc/opene906_datasheet.pdf
https://www.sifive.com/core-designer
http://www.andestech.com/en/products-solutions/andescore-processors/riscv-n22/
https://cloudbear.ru/bm_310.html
https://cloudbear.ru/bi_651.html
https://www.nucleisys.com/product.php?site=n200
https://www.nucleisys.com/product.php?site=n900
https://www.nucleisys.com/product.php?site=n900
https://www.renesas.com/us/en/document/dst/r9a02g021-datasheet?r=25470171


ABI Extensions (no new ABI required)
Regular C function that save/restores all caller-save registers
Inline handler gcc interrupt attribute to always callee-save every register (save as you go)
psABI Task Group - https://github.com/riscv-non-isa/riscv-elf-psabi-doc

https://github.com/riscv-non-isa/riscv-elf-psabi-doc/blob/eabi/eabi.adoc

https://github.com/riscv-non-isa/riscv-elf-psabi-doc
https://github.com/riscv-non-isa/riscv-elf-psabi-doc/blob/eabi/eabi.adoc

	Fast Interrupts TG

